Publications

2021
Zerdia M, Demagh R. Analyse Numérique tridimensionnelle de l’interaction de Tunnels Jumeaux- étude de cas. The 2nd International Symposium on Construction Management and Civil Engineering (ISCMCE- 2021), 10-11 Novembre [Internet]. 2021. Publisher's Version
Benaicha AC, Fourar A, Mansouri T. Contribution à l’étude de valorisation des sédiments extraits du barrage de Koudiat Medouar dans les travaux de construction. Séminaire international sur l’ingénierie de la construction des villes (architecture, génie civil, hydraulique, travaux publics, urbanisme) [Internet]. 2021. Publisher's Version
Rahem A, Yahiaoui D, Lahbari N, Bouzid T. Effect of Masonry Infill Walls with Openings on Nonlinear Response of Steel Frames. Civil Engineering Journal [Internet]. 2021;7 (2). Publisher's VersionAbstract
The infill walls are usually considered as nonstructural elements and, thus, are not taken into account in analytical models. However, numerous researches have shown that they can significantly affect the seismic response of the structures. The aim of the present study is to examine the role of masonry infill on the damage response of steel frame without and with various types of openings systems subjected to nonlinear static analysis and nonlinear time history analysis. For the purposes of the above investigation, a comprehensive assessment is conducted using twelve typical types of steel frame without masonry, with full masonry and with different heights and widths of openings. The results revealed that the influence of the successive earthquake phenomenon on the structural damage is larger for the infill buildings compared to the bare structures. Furthermore, when buildings with masonry infill are analyzed for seismic sequences, it is of great importance to account for the orientation of the seismic motion. The nonlinear static response indicated that the opening area has an influence on the maximal strength, the ductility and the initial rigidity of these frames. But the shape of the opening will not influence the global behavior. Then, the nonlinear time history analysis indicates that the global displacement is greatly decreased and even the behavior of the curve is affected by the earthquake intensity when opening is considered.
Mansouri T, Boufarh R, Saadi D. Effects of underground circular void on strip footing laid on the edge of a cohesionless slope under eccentric loads. Soils and Rocks [Internet]. 2021;44 (1). Publisher's VersionAbstract
Owing to the comeback of small-scale models, this paper presents results of an experimental study based on the effect of underground circular voids on strip footing placed on the edge of a cohesionless slope and subjected to eccentric loads. The bearing capacity-settlement relationship of footing on the slope and impact of diverse variables are expressed using dimensionless parameters such as the top vertical distance of the void from the base of footing, horizontal space linking the void-footing centre, and load eccentricity. The results verified that the stability of strip footing is influenced by the underground void, as well as the critical depth between the soil and top layer of the void. The critical horizontal distance between the void and the centre was also affected by the underground void. Furthermore, the results also verified that the influence of the void appeared insignificant when it was positioned at a depth or eccentricity equal to twice the width of footing.
Saadi D, Boufarh R, Mansouri T, Abbeche K. Etude de l'effet des cavités sur la capacité portante de deux fondations superficielles interférées reposant sur un sol granulaire. 1ère Edition des Journées Internationales en Géosciences et Environnement (JIGE2021) Agadir 26-27 Mars 2021. [Internet]. 2021. Publisher's Version
Boufarh R, MANSOUR T, Boursas F. Etude numérique de la capacité portante d’une fondation renforcée par une colonne ballastée confinée par géogrille. The 2nd International Symposium on Construction Management and Civil Engineering (ISCMCE- 2021) [Internet]. 2021. Publisher's Version
Amrane M, Messast S, Demagh R. Évaluation de la capacité portante des sols stratifiés à l'aide d'un logiciel d'analyse par éléments finis. The 2nd International Symposium on Construction Management and Civil Engineering (ISCMCE- 2021),10-11 Novembre. 2021.
Mebarki M, Karech T, Derfouf F-E-M, Nabil A-B. Identification and characterization of the swelling of a soil in the Boumagueur region-Batna-. Second International Conference on Civil Engineering (ICCE 2021) [Internet]. 2021. Publisher's VersionAbstract

This work is divided into two parts. In the first part, we are mainly interested in the detailed description and the geological, hydrogeological, climatological and geotechnical characterization of the Boumagueur study region. The second part shows the results of an experimental study carried out in the laboratory to determine the swelling parameters of a swelling clayey soil from Boumagueur region. Subsequently, a study of the suction influence on volume behavior and on swelling parameters was carried out.

Bezih K, Demagh R, Djenane M, Laouche M. Impact of long-term soil deformations on the performance of RC bridges considering soil-structure interaction. First International Conference on Geotechnical, Structural and Advanced Materials Engineering (ICGSAME’ 2021), 05-07 Décembre. 2021.
Amrane M, Messast S, Demagh R. La Reponse D’une Fondation Superficielle A Une Infiltration Continue A La Surface Du Sol. The 2nd International Symposium on Construction Management and Civil Engineering (ISCMCE- 2021), 10-11 Novembre,. 2021.
Benaicha AC, Fourar A, Mansouri T, Massouh F. Mechanical Behavior of the Extraction Mud Dam for Use in the Manufacture of CEB. Civil Engineering Journal [Internet]. 2021;7 (10). Publisher's VersionAbstract
The aim of this work is to study the mechanical behavior of the sediments extracted from the Koudiet Meddaouar, Timgad dam (Algeria), for a possible valorization in the field for building works in order to minimize this phenomenon which is currently a concern for the operators and the persons in charge of the mobilization of the water resources. This siltation therefore severely limits its storage capacity and consequently it’s operating life. The extraction of the sediments accumulated in the dam’s reservoir is therefore imperative, on the pain of seeing it perish in the medium term. These sediments are, however, of great geotechnical and mechanical value. The results of the tests conducted in the laboratory have enabled us to identify the different sediments from a physical and geotechnical point of view In front of the difficulties noted in the control of the silting up of the dams in Algeria, a very important quantity of silt being deposited annually in the dams. In order to achieve our objective, different mixtures of silt with or without lime treatment, cement glass fibers and powdered fibers were studied for the possible manufacture of Compressed Earth Bricks (CEB). The results obtained show that some of the mixtures present very interesting results in the different tests (compression and bending), verifying the conditions of the standards in force and thus allowing their use in the field of the manufacture of building materials.
Mebarki M, al. Modélisation du comportement sur chemin de drainage-humidification de la marne de Boumagueur -Batna-. 2nd International Symposium on Construction Management and Civil Engineering (ISCMCE 2021). 2021.
Zerdia M, Demagh R. Numerical Analysis of Movements Induced by Mechanized Twin Tunnels Excavation-Case Study. First International Conference on Geotechnical, Structural and Advanced Materials Engineering (ICGSAME’ 2021) , 5-7 December [Internet]. 2021. Publisher's Version
Guettafi N, Yahiaoui D, Abbeche K, Bouzid T. Performance Assessment of Interaction Soil Pile Structure Using the Fragility Methodology. Civil Engineering Journal [Internet]. 2021;7 (2). Publisher's VersionAbstract
This study aimed to investigate whether the seismic fragility and performance of interaction soil-pile-structure (ISPS) were affected by different parameters:  axial load, a section of the pile, and the longitudinal steel ratio of the pile were implanted in different type of sand (loose, medium, dense). In order to better understand the ISPS phenomena, a series of nonlinear static analysis have been conducted for two different cases, namely: (i) fixed system and (ii) ISPS system, to get the curves of the capacity of every parameter for developing the fragility curve. After a comparison of the numerical results of pushover analysis and fragility curves, the results indicate that these parameters are significantly influenced on lateral capacity, ductility and seismic fragility on the ISPS. The increasing in the axial load exhibit high probabilities of exceeding the damage state. The increase in pile section and longitudinal steel ratio, the effect of probability damage (low and high) are not only related to the propriety geometrically, but also related to the values of ductility and lateral capacity of the system.
Benali R, Mellas M, Baheddi M, Mansouri T, Boufarh R. Physico-mechanical Behaviors and Durability of Heated Fiber Concrete. Civil Engineering Journal [Internet]. 2021;7 (9). Publisher's VersionAbstract
The objective of the present manuscript is to describe the impact of polypropylene fibers on the behavior of heated concrete subjected to heating and cooling cycles at temperatures of 200, 450 and 600 °C respectively for six hours, through a series of experimental tests on mass loss, water absorption, porosity, compressive and tensile strength. For this purpose, mixes were prepared with a water/cement ratio with the incorporation of polypropylene fibers with a rate varying from 0.5 to 1.5%. These fibers were added in order to improve the thermal stability and to prevent the concrete from splitting. The results show that a considerable loss of strength was noticed for all tested specimens. The relative compressive strengths of the concretes containing polypropylene fibers were higher than those of the concretes without fibers. Also, a greater loss of mass of the polypropylene fibers compared to those without fibers was noticed when increasing the temperature. The flexural tensile strength of the concrete was more sensitive to elevated temperatures than the compressive strength and a rapid increase in porosity was observed for the fiber-reinforced concrete compared to the reference concrete. Furthermore, water absorption by the fibers is proportional to the fiber content of the concrete.
Hamzaoui L, Bouzid T. The Proposition of an EI Equation of Square and L–Shaped Slender Reinforced Concrete Columns under Combined Loading. Engineering, Technology & Applied Science Research [Internet]. 2021;11 (3) :7100-7106. Publisher's VersionAbstract
The stability and strength of slender Reinforced Concrete (RC) columns depend directly on the flexural stiffness EI, which is a major parameter in strain calculations including those with bending and axial load. Due to the non-linearity of the stress-strain curve of concrete, the effective bending stiffness EI always remains variable. Numerical simulations were performed for square and L-shaped reinforced concrete sections of slender columns subjected to an eccentric axial force to estimate the variation of El resulting from the actual behavior of the column, based on the moment-curvature relationship. Seventy thousand (70000) hypothetical slender columns, each with a different combination of variables, were used to investigate the main variables that affect the EI of RC slender columns. Using linear regression analysis, a new simple and linear expression of EI was developed. Slenderness, axial load level, and concrete strength have been identified as the most important factors affecting effective stiffness. Finally, the comparison between the results of the new equation and the methods proposed by ACI-318 and Euro Code-2 was carried out in connection with the experimental results of the literature. A good agreement of the results was found.
SAADI M, Yahiaoui D, Lahbari N, Bouzid T. Seismic Fragility Curves for Performance of Semi-rigid Connections of Steel Frames. Civil Engineering Journal [Internet]. 2021;7 (7). Publisher's VersionAbstract
A steel frame with a semi-rigid connection is one of the most widely used structural systems in modern construction. These systems are cheap to make, require less time to construct and offer the highest quality and reliable construction quality without the need for highly skilled workers. However, these systems show greater natural periods compared to their perfectly rigid frame counterparts. This causes the building to attract low loads during earthquakes. In this research study, the seismic performance of steel frames with semi-rigid joints is evaluated. Three connections with capacities of 50, 70 and 100% of the beam’s plastic moment are studied and examined. The seismic performance of these frames is determined by a non-linear static pushover analysis and an incremental dynamic analysis leading finally to the fragility curves which are developed. The results show that a decrease in the connection capacity increases the probability of reaching or exceeding a particular damage limit state in the frames is found.
Benaicha AC, Fourar A, Mansouri T. Study Of The Solid Transport And Their Impact Of The Silting Dams. 1er Séminaire national sur l’eau, géotechnique et environnement [Internet]. 2021. Publisher's Version
Boukhalfa G, Sebti B, Mazouz F. ACO Tuned Fuzzy Second Order Sliding Mode Controller with Direct Torque Control of Induction Motor. International Conference on Artificial Intelligence in Renewable Energetic Systems IC-AIRES 2021 [Internet]. 2021. Publisher's VersionAbstract
This work deals with the performance improvement study of the direct torque control (DTC) of induction Motor (IM) based on Fuzzy Second Order Sliding Mode Control (FSOSMC). Direct torque control using conventional Second Order Sliding Mode Control regulators has certain disadvantages such as significant flux, torque ripples and sensitivity to parametric variations. To overcome these drawbacks, we apply a new type with more robust regulators such as the fuzzy second order sliding mode control. In recent years, Ant Colony Optimization (ACO) algorithm have attracted considerable attention among various modern heuristic optimization techniques. This paper proposes the ant colony optimization algorithm with fuzzy second order sliding mode controller based direct torque control of induction motor to enhance the system performance and stability. Simulation results demonstrate the feasibility and validity of the proposed DTC-FSOSMC system by effectively accelerating system response, reducing torque and flux ripple and a very satisfactory performance has been achieved.
Mazouz F, Sebti B, Boukhalfa G, Ilhami C. Backstepping Approach Based on Direct Power Control of a DFIG in WECS. 10th International Conference on Renewable Energy Research and Application (ICRERA) [Internet]. 2021. Publisher's VersionAbstract
This work deals with the study and performance improvement of the direct power control of DFIG based on backstepping Controller. Direct power control using hysteresis regulator has certain disadvantages such as significant powers ripples, variable switching frequency and sensitivity to parametric variations. To surmount these disadvantages, we present a robust controller such as the backstepping-based direct power control using SVM. A comparison study was made between the classic direct power control and the backstepping controller. The simulation results show that the backstepping controller provides good results reduces powers ripples.

Pages